Solidification of a binary alloy: Finite-element, single-domain simulation and new benchmark solutions

نویسندگان

  • Michael Le Bars
  • M. Grae Worster
چکیده

A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481–501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249–264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598–615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199–228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135– 2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955–3967] and in a mixed liquid–porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955–3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103–1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification. 2005 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Investigation of Directional Binary Alloy Solidification Processes Using a Volume-averaging Technique

A numerical investigation of directional binary alloy solidification processes is presented. In particular, a mathematical model is developed to study macrosegregation patterns as a consequence of thermal-solutal convection in the melt and mushy zone. A good understanding of the basic mechanisms of macrosegregation is helpful in designing and controlling solidification processes in order to ach...

متن کامل

Computer Simulation of Equidxed Eutectic Solidifiction of Metals

In the present work, the solidification process was simulated in both macroscopic and microscopic scales. Two-dimensional heat transfer equation for conduction was applied for macroscopic modeling using enthalpy formulation and finite element method. In order to decrease execution time and/or memory capacity in finite analysis, skyline mathematical technique was adapted. The microenthalpy metho...

متن کامل

Phase-field simulations of solidification in binary and ternary systems using a finite element method

We present adaptive finite element simulations of dendritic and eutectic solidification in binary and ternary alloys. The computations are based on a recently formulated phase-field model that is especially appropriate for modelling non-isothermal solidification in multicomponent multiphase systems. In this approach, a set of governing equations for the phase-field variables, for the concentrat...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Artificial Bee Colony Algorithm in the Solution of Selected Inverse Problem of the Binary Alloy Solidification

The paper presents a procedure for reconstructing, on the basis of known measurements of temperature, the heat transfer coefficient and the distribution of temperature in given region of solidifying binary alloy in the casting mould. Solution of the considered inverse problem is found by applying the finite element method for solving the corresponding direct problem and the Artificial Bee Colon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2006